Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.688
Filter
1.
Nature ; 628(8008): 664-671, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38600377

ABSTRACT

Bitter taste sensing is mediated by type 2 taste receptors (TAS2Rs (also known as T2Rs)), which represent a distinct class of G-protein-coupled receptors1. Among the 26 members of the TAS2Rs, TAS2R14 is highly expressed in extraoral tissues and mediates the responses to more than 100 structurally diverse tastants2-6, although the molecular mechanisms for recognizing diverse chemicals and initiating cellular signalling are still poorly understood. Here we report two cryo-electron microscopy structures for TAS2R14 complexed with Ggust (also known as gustducin) and Gi1. Both structures have an orthosteric binding pocket occupied by endogenous cholesterol as well as an intracellular allosteric site bound by the bitter tastant cmpd28.1, including a direct interaction with the α5 helix of Ggust and Gi1. Computational and biochemical studies validate both ligand interactions. Our functional analysis identified cholesterol as an orthosteric agonist and the bitter tastant cmpd28.1 as a positive allosteric modulator with direct agonist activity at TAS2R14. Moreover, the orthosteric pocket is connected to the allosteric site via an elongated cavity, which has a hydrophobic core rich in aromatic residues. Our findings provide insights into the ligand recognition of bitter taste receptors and suggest activities of TAS2R14 beyond bitter taste perception via intracellular allosteric tastants.


Subject(s)
Cholesterol , Intracellular Space , Receptors, G-Protein-Coupled , Taste , Humans , Allosteric Regulation/drug effects , Allosteric Site , Cholesterol/chemistry , Cholesterol/metabolism , Cholesterol/pharmacology , Cryoelectron Microscopy , Hydrophobic and Hydrophilic Interactions , Intracellular Space/chemistry , Intracellular Space/metabolism , Ligands , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/ultrastructure , Reproducibility of Results , Taste/drug effects , Taste/physiology , Transducin/chemistry , Transducin/metabolism , Transducin/ultrastructure
2.
J Biol Chem ; 300(4): 107132, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432636

ABSTRACT

Heme is an iron-containing prosthetic group necessary for the function of several proteins termed "hemoproteins." Erythrocytes contain most of the body's heme in the form of hemoglobin and contain high concentrations of free heme. In nonerythroid cells, where cytosolic heme concentrations are 2 to 3 orders of magnitude lower, heme plays an essential and often overlooked role in a variety of cellular processes. Indeed, hemoproteins are found in almost every subcellular compartment and are integral in cellular operations such as oxidative phosphorylation, amino acid metabolism, xenobiotic metabolism, and transcriptional regulation. Growing evidence reveals the participation of heme in dynamic processes such as circadian rhythms, NO signaling, and the modulation of enzyme activity. This dynamic view of heme biology uncovers exciting possibilities as to how hemoproteins may participate in a range of physiologic systems. Here, we discuss how heme is regulated at the level of its synthesis, availability, redox state, transport, and degradation and highlight the implications for cellular function and whole organism physiology.


Subject(s)
Cell Physiological Phenomena , Heme , Animals , Humans , Circadian Rhythm/physiology , Heme/metabolism , Hemeproteins/metabolism , Oxidation-Reduction , Signal Transduction , Intracellular Space/metabolism , Cell Physiological Phenomena/physiology
3.
J Biol Chem ; 300(3): 105668, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272232

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and a critical class of regulators of mammalian physiology. Also known as seven transmembrane receptors (7TMs), GPCRs are ubiquitously expressed and versatile, detecting a diverse set of endogenous stimuli, including odorants, neurotransmitters, hormones, peptides, and lipids. Accordingly, GPCRs have emerged as the largest class of drug targets, accounting for upward of 30% of all prescription drugs. The view that ligand-induced GPCR responses originate exclusively from the cell surface has evolved to reflect accumulating evidence that receptors can elicit additional waves of signaling from intracellular compartments. These events in turn shape unique cellular and physiological outcomes. Here, we discuss our current understanding of the roles and regulation of compartmentalized GPCR signaling.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Animals , Cell Membrane/metabolism , Receptors, G-Protein-Coupled/metabolism , Humans , Intracellular Space/metabolism , Enzyme Activation
4.
Nucleic Acids Res ; 52(1): e2, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37953397

ABSTRACT

To gain a better understanding of the complexity of gene expression in normal and diseased tissues it is important to account for the spatial context and identity of cells in situ. State-of-the-art spatial profiling technologies, such as the Nanostring GeoMx Digital Spatial Profiler (DSP), now allow quantitative spatially resolved measurement of the transcriptome in tissues. However, the bioinformatics pipelines currently used to analyse GeoMx data often fail to successfully account for the technical variability within the data and the complexity of experimental designs, thus limiting the accuracy and reliability of the subsequent analysis. Carefully designed quality control workflows, that include in-depth experiment-specific investigations into technical variation and appropriate adjustment for such variation can address this issue. Here, we present standR, an R/Bioconductor package that enables an end-to-end analysis of GeoMx DSP data. With four case studies from previously published experiments, we demonstrate how the standR workflow can enhance the statistical power of GeoMx DSP data analysis and how the application of standR enables scientists to develop in-depth insights into the biology of interest.


Subject(s)
Gene Expression Profiling , Software , Transcriptome , Computational Biology , Reproducibility of Results , Workflow , Intracellular Space/genetics
5.
Biochim Biophys Acta Gen Subj ; 1868(2): 130535, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103757

ABSTRACT

BACKGROUND: Calcimycin (A23187) is a polyether antibiotic and divalent cation ionophore, extracted from Streptomyces chartrecensis. With wide variety of antimicrobial activities, it also exhibits cytotoxicity of tumor cells. Calcimycin exhibit therapeutic potential against tumor cell growth; however, the molecular mechanism remains to be fully elucidated. Present study explores the mechanism of calcimycin-induced apoptosis cancer cell lines. METHODS: Apoptotic induction in a dose-dependent manner were recorded with MTT assays, Phase contrast imaging, wound healing assay, fluorescence imaging by DAPI and AO/EB staining and FACS using cell line model. Mitochondrial potential was analyzed by TMRM assay as Ca2+ signaling is well known to be influenced and synchronized by mitochondria also. RESULTS: Calcimycin induces apoptosis in dose dependent manner, also accompanied by increased intracellular calcium-level and expression of purinergic receptor-P2RX4, a ligand-gated ion channel. CONCLUSION: Calcimycin tends to increase the intracellular calcium level, mRNA expression of ATP receptor P2RX4, and phosphorylation of p38. Blocking of either intracellular calcium by BAPTA-AM, P2RX4 expression by antagonist 5-BDBD, and phospho-p38 by SB203580, abrogated the apoptotic activity of calcimycin. GENERAL SIGNIFICANCE: Taken together, these results show that calcimycin induces apoptosis in P2RX4 and ATP mediated intracellular Ca2+ and p38 MAPK mediated pathway in both the cancer cell lines. This study explored a new mode of action for calcimycin in cancer that could be potentially employed in future studies for cancer therapeutic research. This study disentangles that the calcimycin-induced apoptotic cell death is P2RX4 and ATP involved, intracellular Ca2+ and p38 MAPK mediated pathway.


Subject(s)
Apoptosis , Calcimycin , Calcium , Receptors, Purinergic P2X4 , MCF-7 Cells , Cell Line, Tumor , Humans , Calcimycin/pharmacology , Apoptosis/drug effects , Calcium/metabolism , Receptors, Purinergic P2X4/metabolism , Intracellular Space/metabolism , Cell Proliferation/drug effects , Cell Movement/drug effects , Cell Cycle Checkpoints/drug effects , Membrane Potential, Mitochondrial/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
6.
Small ; 20(17): e2307955, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38148312

ABSTRACT

Unraveling the intricacies between oxygen dynamics and cellular processes in the tumor microenvironment (TME) hinges upon precise monitoring of intracellular and intratumoral oxygen levels, which holds paramount significance. The majority of these reported oxygen nanoprobes suffer compromised lifetime and quantum yield when exposed to the robust ROS activities prevalent in TME, limiting their prolonged in vitro usability. Herein, the ruthenium-embedded oxygen nano polymeric sensor (Ru-ONPS) is proposed for precise oxygen gradient monitoring within the cellular environment and TME. Ru-ONPS (≈64±7 nm) incorporates [Ru(dpp)3]Cl2 dye into F-127 and crosslinks it with urea and paraformaldehyde, ensuring a prolonged lifetime (5.4 µs), high quantum yield (66.65 ± 2.43% in N2 and 49.80 ± 3.14% in O2), superior photostability (>30 min), and excellent stability in diverse environmental conditions. Based on the Stern-Volmer plot, the Ru-ONPS shows complete linearity for a wide dynamic range (0-23 mg L-1), with a detection limit of 10 µg mL-1. Confocal imaging reveals Ru-ONPS cellular uptake and intratumoral distribution. After 72 h, HCT-8 cells show 5.20±1.03% oxygen levels, while NIH3T3 cells have 7.07±1.90%. Co-culture spheroids display declining oxygen levels of 17.90±0.88%, 10.90±0.88%, and 5.10±1.18%, at 48, 120, and 216 h, respectively. Ru-ONPS advances cellular oxygen measurement and facilitates hypoxia-dependent metastatic research and therapeutic target identification.


Subject(s)
Oxygen , Polymers , Oxygen/metabolism , Humans , Polymers/chemistry , Tumor Microenvironment , Cell Line, Tumor , Animals , Ruthenium/chemistry , Mice , Biosensing Techniques/methods , Intracellular Space/metabolism
7.
PLoS One ; 18(11): e0291331, 2023.
Article in English | MEDLINE | ID: mdl-38011105

ABSTRACT

B. parapertussis is one of the etiological agents of whooping cough. Once inhaled, the bacteria bind to the respiratory epithelium and start the infection. Little is known about this first step of host colonization and the role of the human airway epithelial barrier on B. parapertussis infection. We here investigated the outcome of the interaction of B. parapertussis with a polarized monolayer of respiratory epithelial cells. Our results show that B. parapertussis preferentially attaches to the intercellular boundaries, and causes the disruption of the tight junction integrity through the action of adenylate cyclase toxin (CyaA). We further found evidence indicating that this disruption enables the bacterial access to components of the basolateral membrane of epithelial cells to which B. parapertussis efficiently attaches and gains access to the intracellular location, where it can survive and eventually spread back into the extracellular environment. Altogether, these results suggest that the adenylate cyclase toxin enables B. parapertussis to overcome the epithelial barrier and eventually establish a niche of persistence within the respiratory epithelial cells.


Subject(s)
Bordetella parapertussis , Whooping Cough , Humans , Bordetella parapertussis/metabolism , Adenylate Cyclase Toxin/metabolism , Bordetella pertussis/metabolism , Intracellular Space/metabolism , Whooping Cough/microbiology , Epithelial Cells/metabolism
8.
Int J Mol Sci ; 24(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37685957

ABSTRACT

Liquid-liquid phase separation (LLPS, also known as biomolecular condensation) and the related biogenesis of various membraneless organelles (MLOs) and biomolecular condensates (BMCs) are now considered fundamental molecular mechanisms governing the spatiotemporal organization of the intracellular space [...].


Subject(s)
Biomolecular Condensates , Intracellular Space
9.
Methods Mol Biol ; 2700: 77-92, 2023.
Article in English | MEDLINE | ID: mdl-37603175

ABSTRACT

Dendritic cells (DCs) have a significant role in coordinating both innate and adaptive immunity by serving as sentinels that detect invaders and initiate immune responses to eliminate them, as well as presenting antigens to activate adaptive immune responses that are specific to the antigen and the context in which it was detected. The regulation of DC functions is complex and involves intracellular drivers such as transcription factors and signaling pathways, as well as intercellular interactions with adhesion molecules, chemokines, and their receptors in the microenvironment. Toll-like receptors (TLRs) are crucial for DCs to detect pathogen-associated molecular patterns (PAMPs) and initiate downstream signaling pathways that lead to DC maturation and education in bridging with adaptive immunity, including the upregulation of MHC class II expression, induction of CD80, CD86, and CD40, and production of innate cytokines. Understanding the TLR pathways that DCs use to respond to innate immune stimuli and convert them into adaptive responses is important for new therapeutic targets identification.We present a novel platform that offers a fast and affordable CRISPR-Cas9 screening of genes that are involved in dendritic cells' TLR-dependent activation. Using CRISPR/Cas9 screening to target individual TLR genes in different dendritic cell subsets allows the identification of TLR-dependent pathways that regulate dendritic cell activation and cytokine production. This approach offers the efficient targeting of TLR driver genes to modulate the immune response and identify novel immune response regulators, establishing a causal link between these regulators and functional phenotypes based on genotypes.


Subject(s)
Dendritic Cells , CRISPR-Cas Systems , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Dendritic Cells/metabolism , Animals , Mice , Cytokines/metabolism , Intracellular Space/metabolism
10.
Biomaterials ; 301: 122262, 2023 10.
Article in English | MEDLINE | ID: mdl-37542857

ABSTRACT

Localized corrosion has become a concerning issue in orthopedic implants as it is associated with peri-implant adverse tissue reactions and implant failure. Here, the pitting corrosion of 316 L stainless steels (316 L SSs) was initiated by electrochemical polarization to simulate the in vivo localized corrosion of orthopedic implants. The effect of localized corrosion on osteogenic differentiation of bone marrow derived mesenchymal stem cells (BMSCs) was systematically studied. The results suggest that pitting corrosion of 316 L SS reduced the viability, adhesion, proliferation, and osteogenic differentiation abilities of BMSCs, especially for the cells around the corrosion pits. The relatively high concentrations of metallic ions such as Cr3+ and Ni2+ released by pitting corrosion could cause cytotoxicity to the BMSCs. The inhomogeneous electrochemical environment resulted from localized corrosion could promote reactive oxygen species (ROS) generation around the corrosion pits and cause oxidative stress of BMSCs. In addition, localized corrosion could also electrochemically interact with the cells and lead to cell membrane depolarization. The depolarized cell membranes and relatively high levels of ROS mediated the degradation of the osteogenic capacity of BMSCs. This work provides new insights into corrosion-mediated cell function degeneration as well as the material-cell interactions.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Stainless Steel , Corrosion , Stainless Steel/chemistry , Cell Differentiation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Animals , Rats , Rats, Sprague-Dawley , Cells, Cultured , Apoptosis , Intracellular Space , Calcium/metabolism , Reactive Oxygen Species/metabolism
11.
J Biol Chem ; 299(9): 105147, 2023 09.
Article in English | MEDLINE | ID: mdl-37567478

ABSTRACT

The vertebrate host's immune system and resident commensal bacteria deploy a range of highly reactive small molecules that provide a barrier against infections by microbial pathogens. Gut pathogens, such as Vibrio cholerae, sense and respond to these stressors by modulating the expression of exotoxins that are crucial for colonization. Here, we employ mass spectrometry-based profiling, metabolomics, expression assays, and biophysical approaches to show that transcriptional activation of the hemolysin gene hlyA in V. cholerae is regulated by intracellular forms of sulfur with sulfur-sulfur bonds, termed reactive sulfur species (RSS). We first present a comprehensive sequence similarity network analysis of the arsenic repressor superfamily of transcriptional regulators, where RSS and hydrogen peroxide sensors segregate into distinct clusters of sequences. We show that HlyU, transcriptional activator of hlyA in V. cholerae, belongs to the RSS-sensing cluster and readily reacts with organic persulfides, showing no reactivity or DNA dissociation following treatment with glutathione disulfide or hydrogen peroxide. Surprisingly, in V. cholerae cell cultures, both sulfide and peroxide treatment downregulate HlyU-dependent transcriptional activation of hlyA. However, RSS metabolite profiling shows that both sulfide and peroxide treatment raise the endogenous inorganic sulfide and disulfide levels to a similar extent, accounting for this crosstalk, and confirming that V. cholerae attenuates HlyU-mediated activation of hlyA in a specific response to intracellular RSS. These findings provide new evidence that gut pathogens may harness RSS-sensing as an evolutionary adaptation that allows them to overcome the gut inflammatory response by modulating the expression of exotoxins.


Subject(s)
Bacterial Proteins , Disulfides , Exotoxins , Gene Expression Regulation, Bacterial , Hemolysin Proteins , Intracellular Space , Sulfhydryl Compounds , Transcriptional Activation , Vibrio cholerae , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Exotoxins/genetics , Exotoxins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Transcriptional Activation/drug effects , Vibrio cholerae/drug effects , Vibrio cholerae/genetics , Vibrio cholerae/metabolism , Disulfides/metabolism , Disulfides/pharmacology , Sulfhydryl Compounds/metabolism , Sulfhydryl Compounds/pharmacology , Intracellular Space/metabolism , Mass Spectrometry , Metabolomics , Glutathione Disulfide/pharmacology , Gastrointestinal Microbiome/immunology
12.
J Mater Chem B ; 11(33): 7873-7912, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37551112

ABSTRACT

Intracellular cargo delivery, the introduction of small molecules, proteins, and nucleic acids into a specific targeted site in a biological system, is an important strategy for deciphering cell function, directing cell fate, and reprogramming cell behavior. With the advancement of nanotechnology, many researchers use nanoparticles (NPs) to break through biological barriers to achieving efficient targeted delivery in biological systems, bringing a new way to realize efficient targeted drug delivery in biological systems. With a similar size to many biomolecules, NPs possess excellent physical and chemical properties and a certain targeting ability after functional modification on the surface of NPs. Currently, intracellular cargo delivery based on NPs has emerged as an important strategy for genome editing regimens and cell therapy. Although researchers can successfully deliver NPs into biological systems, many of them are delivered very inefficiently and are not specifically targeted. Hence, the development of efficient, target-capable, and safe nanoscale drug delivery systems to deliver therapeutic substances to cells or organs is a major challenge today. In this review, on the basis of describing the research overview and classification of NPs, we focused on the current research status of intracellular cargo delivery based on NPs in biological systems, and discuss the current problems and challenges in the delivery process of NPs in biological systems.


Subject(s)
Intracellular Space , Nanostructures , Animals , Intracellular Space/chemistry , Drug Delivery Systems , Nanostructures/chemistry , Nanoparticles/chemistry , Endocytosis , Liposomes/chemistry , Gene Silencing
13.
Anal Chem ; 95(33): 12427-12434, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37560995

ABSTRACT

Reactive sulfur species (RSS) are emerging as a potential key gasotransmitter in diverse physiological processes linking two signaling molecules H2S and SO2. However, the exact roles of H2S and SO2 remain unclear. A major hurdle is the shortage of accurate and robust approaches for sensing of H2S and SO2 in biological systems. Herein, we report a reaction-mediated dual-recognition strategy-based nanosensor, silver nanoparticles (AgNPs)-loaded MIL-101 (Fe) (ALM) hybrids, for the simultaneous detection of H2S and SO2 in a living cell. Upon exposure to H2S, AgNPs can be oxidized to form Ag2S, causing a decrease of surface enhanced Raman spectroscopy (SERS) signals of p,p'-dimercaptoazobenzene. Moreover, SO2 reacts with the amino moiety of MIL-101 to form charge-transfer complexes, resulting in an increment of fluorescent (FL) intensity. The ALM with dual-modal signals can simultaneously analyze H2S and SO2 at a concentration as low as 2.8 × 10-6 and 0.003 µM, respectively. Most importantly, the ALM sensing platform enables targeting mitochondria and detection multiple RSS simultaneously in living cells under external stimulation, as well as displays indiscernible crosstalk between SERS and FL signals, which is very beneficial for the comprehension of physiological issues related with RSS.


Subject(s)
Intracellular Space , Intracellular Space/chemistry , Sulfur/chemistry , Humans , Cell Line, Tumor , Silver/chemistry , Metal Nanoparticles , Sulfur Dioxide/chemistry
14.
Sci Adv ; 9(35): eadi4517, 2023 09.
Article in English | MEDLINE | ID: mdl-37647406

ABSTRACT

Signal perception is a key function in regulating biological activities and adapting to changing environments. Per-Arnt-Sim (PAS) domains are ubiquitous sensors found in diverse receptors in bacteria, archaea, and eukaryotes, but their origins, distribution across the tree of life, and extent of their functional diversity are not fully characterized. Here, we show that using sequence conservation and structural information, it is possible to propose specific and potential functions for a large portion of nearly 3 million PAS domains. Our analysis suggests that PAS domains originated in bacteria and were horizontally transferred to archaea and eukaryotes. We reveal that gas sensing via a heme cofactor evolved independently in several lineages, whereas redox and light sensing via flavin adenine dinucleotide and flavin mononucleotide cofactors have the same origin. The close relatedness of human PAS domains to those in bacteria provides an opportunity for drug design by exploring potential natural ligands and cofactors for bacterial homologs.


Subject(s)
Bacteria , Eukaryota , Intracellular Space , Protein Domains , Proteins , Eukaryota/chemistry , Humans , Animals , Drug Delivery Systems , Bacteria/chemistry , Phylogeny , Flavin-Adenine Dinucleotide/metabolism , Intracellular Space/metabolism , Proteins/chemistry , Proteins/genetics , Proteins/metabolism
15.
Genes (Basel) ; 14(7)2023 07 01.
Article in English | MEDLINE | ID: mdl-37510296

ABSTRACT

Charcot-Marie-Tooth disease (CMT) and associated neuropathies are the most predominant genetically transmitted neuromuscular conditions; however, effective pharmacological treatments have not established. The extensive genetic heterogeneity of CMT, which impacts the peripheral nerves and causes lifelong disability, presents a significant barrier to the development of comprehensive treatments. An estimated 100 loci within the human genome are linked to various forms of CMT and its related inherited neuropathies. This review delves into prospective therapeutic strategies used for the most frequently encountered CMT variants, namely CMT1A, CMT1B, CMTX1, and CMT2A. Compounds such as PXT3003, which are being clinically and preclinically investigated, and a broad array of therapeutic agents and their corresponding mechanisms are discussed. Furthermore, the progress in established gene therapy techniques, including gene replacement via viral vectors, exon skipping using antisense oligonucleotides, splicing modification, and gene knockdown, are appraised. Each of these gene therapies has the potential for substantial advancements in future research.


Subject(s)
Charcot-Marie-Tooth Disease , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Charcot-Marie-Tooth Disease/therapy , Humans , Mutation , Intracellular Space/metabolism , Calcium/metabolism , Gene Silencing , Genetic Therapy , Animals
16.
Nat Microbiol ; 8(8): 1450-1467, 2023 08.
Article in English | MEDLINE | ID: mdl-37337046

ABSTRACT

Akkermansia muciniphila, a mucophilic member of the gut microbiota, protects its host against metabolic disorders. Because it is genetically intractable, the mechanisms underlying mucin metabolism, gut colonization and its impact on host physiology are not well understood. Here we developed and applied transposon mutagenesis to identify genes important for intestinal colonization and for the use of mucin. An analysis of transposon mutants indicated that de novo biosynthesis of amino acids was required for A. muciniphila growth on mucin medium and that many glycoside hydrolases are redundant. We observed that mucin degradation products accumulate in internal compartments within bacteria in a process that requires genes encoding pili and a periplasmic protein complex, which we term mucin utilization locus (MUL) genes. We determined that MUL genes were required for intestinal colonization in mice but only when competing with other microbes. In germ-free mice, MUL genes were required for A. muciniphila to repress genes important for cholesterol biosynthesis in the colon. Our genetic system for A. muciniphila provides an important tool with which to uncover molecular links between the metabolism of mucins, regulation of lipid homeostasis and potential probiotic activities.


Subject(s)
Intestines , Mucins , Verrucomicrobia , Animals , Mice , Mucins/metabolism , Sterols/biosynthesis , Verrucomicrobia/genetics , Verrucomicrobia/growth & development , Verrucomicrobia/metabolism , Intestines/microbiology , Specific Pathogen-Free Organisms , DNA Transposable Elements/genetics , Mutagenesis , Host Microbial Interactions/genetics , Intracellular Space/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Transcription, Genetic
17.
Chem Commun (Camb) ; 59(48): 7463-7466, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37254719

ABSTRACT

Herein, we report an indocyanine green (ICG)-decorated and glucose oxidase (GOx)-loaded nanoscale composite COF material via a stepwise post-synthetic modification. The obtained GOx@COF-ICG can achieve synergistic inhibition of intracellular heat defense systems through starvation therapy to enhance photothermal therapy of tumors.


Subject(s)
Heat-Shock Response , Intracellular Space , Nanostructures , Neoplasms , Intracellular Space/chemistry , Metal-Organic Frameworks/chemistry , Cell Survival , Humans , Cell Line, Tumor , Animals , Photothermal Therapy , Neoplasms/therapy
18.
Microb Biotechnol ; 16(7): 1524-1535, 2023 07.
Article in English | MEDLINE | ID: mdl-37212362

ABSTRACT

Exosomes, membrane vesicles released extracellularly from cells, contain nucleic acids, proteins, lipids and other components, allowing the transfer of material information between cells. Recent studies reported the role of exosomes in pathogenic microbial infection and host immune mechanisms. Brucella-invasive bodies can survive in host cells for a long time and cause chronic infection, which causes tissue damage. Whether exosomes are involved in host anti-Brucella congenital immune responses has not been reported. Here, we extracted and identified exosomes secreted by Brucella melitensis M5 (Exo-M5)-infected macrophages, and performed in vivo and in vitro studies to examine the effects of exosomes carrying antigen on the polarization of macrophages and immune activation. Exo-M5 promoted the polarization of M1 macrophages, which induced the significant secretion of M1 cytokines (tumour necrosis factor-α and interferon-γ) through NF-κB signalling pathways and inhibited the secretion of M2 cytokines (IL-10), thereby inhibiting the intracellular survival of Brucella. Exo-M5 activated innate immunity and promoted the release of IgG2a antibodies that protected mice from Brucella infection and reduced the parasitaemia of Brucella in the spleen. Furthermore, Exo-M5 contained Brucella antigen components, including Omp31 and OmpA. These results demonstrated that exosomes have an important role in immune responses against Brucella, which might help elucidate the mechanisms of host immunity against Brucella infection and aid the search for Brucella biomarkers and the development of new vaccine candidates.


Subject(s)
Brucellosis , Exosomes , Macrophages , Brucella melitensis , Macrophages/cytology , Macrophages/immunology , Macrophages/microbiology , Exosomes/immunology , Exosomes/microbiology , Animals , Mice , Cell Polarity , Antigens, Bacterial/immunology , Brucellosis/immunology , Brucellosis/metabolism , Signal Transduction , Intracellular Space/microbiology , Microbial Viability
19.
J Biol Chem ; 299(5): 104628, 2023 05.
Article in English | MEDLINE | ID: mdl-36963491

ABSTRACT

The GDT1 family is broadly spread and highly conserved among living organisms. GDT1 members have functions in key processes like glycosylation in humans and yeasts and photosynthesis in plants. These functions are mediated by their ability to transport ions. While transport of Ca2+ or Mn2+ is well established for several GDT1 members, their transport mechanism is poorly understood. Here, we demonstrate that H+ ions are transported in exchange for Ca2+ and Mn2+ cations by the Golgi-localized yeast Gdt1 protein. We performed direct transport measurement across a biological membrane by expressing Gdt1p in Lactococcus lactis bacterial cells and by recording either the extracellular pH or the intracellular pH during the application of Ca2+, Mn2+ or H+ gradients. Besides, in vivo cytosolic and Golgi pH measurements were performed in Saccharomyces cerevisiae with genetically encoded pH probes targeted to those subcellular compartments. These data point out that the flow of H+ ions carried by Gdt1p could be reversed according to the physiological conditions. Together, our experiments unravel the influence of the relative concentration gradients for Gdt1p-mediated H+ transport and pave the way to decipher the regulatory mechanisms driving the activity of GDT1 orthologs in various biological contexts.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Golgi Apparatus/metabolism , Hydrogen-Ion Concentration , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Calcium/metabolism , Magnesium/metabolism , Cations/metabolism , Protons , Lactococcus lactis/genetics , Intracellular Membranes/metabolism , Intracellular Space/chemistry , Intracellular Space/metabolism
20.
Curr Opin Immunol ; 82: 102306, 2023 06.
Article in English | MEDLINE | ID: mdl-36989589

ABSTRACT

Persistent bacterial infections constitute an enormous challenge for public health. Amongst infections with other bacteria, infections with typhoidal and nontyphoidal Salmonella enterica serovars can result in long-term infections of the human and animal host. Persistent infections that are asymptomatic are difficult to identify and thus can serve as a silent reservoir for transmission. Symptomatic persistent infections are often difficult to treat as they harbor a combination of antibiotic-tolerant and antibiotic-resistant bacteria and boost the spread of genetic antibiotic resistance. In the last couple of years, the field has made some major progress in understanding the role of persisters, their reservoirs as well as their interplay with host factors in persistent Salmonella infections.


Subject(s)
Persistent Infection , Salmonella Infections , Humans , Intracellular Space , Salmonella/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...